
Contracts for Domain-Specific Languages in Ruby

T. Stephen Strickland Brianna M. Ren Jeffrey S. Foster
University of Maryland, College Park
{sstrickl,bren,jfoster}@cs.umd.edu

Abstract

This paper concerns object-oriented embedded DSLs, which are
popular in the Ruby community but have received little attention in
the research literature. Ruby DSLs implement language keywords
as implicit method calls to self; language structure is enforced by
adjusting which object is bound to self in different scopes. While
Ruby DSLs are powerful and elegant, they suffer from a lack of
specification. In this paper, we introduce contracts for Ruby DSLs,
which allow us to attribute blame appropriately when there are in-
consistencies between an implementation and client. We formal-
ize Ruby DSL contract checking in �DSL, a core calculus that uses
premethods with instance evaluation to enforce contracts. We then
describe RDL, an implementation of Ruby DSL contracts. Finally,
we present two tools that automatically infer RDL contracts: Type-
Infer infers simple, type-like contracts based on observed method
calls, and DSLInfer infers DSL keyword scopes and nesting by gen-
erating and testing candidate DSL usages based on initial exam-
ples. The type contracts generated by TypeInfer work well enough,
though they are limited in precision by the small number of tests,
while DSLInfer finds almost all DSL structure. Our goal is to help
users understand a DSL from example programs.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Programming by contract

Keywords domain-specific languages, software contracts

1. Introduction

Embedded domain-specific languages (EDSLs) [6, 8, 12, 21, 26,
33] let programmers express their ideas with domain-specific con-
cepts within the syntax of a host language. EDSLs are both pow-
erful and convenient, as they leverage host language implementa-
tions to integrate with existing libraries, interpreters, and compilers.
This paper studies a kind of EDSL that, to our knowledge, has not
been previously explored in the research literature: those developed
and used extensively by the Ruby community. We refer to these
as object-oriented embedded DSLs (or just Ruby DSLs), because
they implement DSL keywords as methods bound to self. Language
scoping is then controlled by rebinding self appropriately. (Exam-
ples of Ruby DSLs can be found in Section 2 and elsewhere [25].)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLS ’14, October 21, 2014, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3211-8/14/10. . . $15.00.
http://dx.doi.org/10.1145/2661088.2661092

In this paper, we propose RDL, a new contract system for
Ruby DSLs. RDL helps users understand a DSL because the DSL
documentation is often insufficient. The key feature of RDL is that
it integrates both standard contract checking [15, 30] and structural
checks of correct DSL keyword availability and use, all in a Ruby-
friendly way. The latter lets programmers enforce the definitions
of DSLs and attribute blame properly when a contract is violated.
For example, without contracts a client could invoke an inherited
method that is not intended to be a DSL keyword, or a provider
could fail to implement a keyword. RDL also supports higher-
order DSL contracts, meaning one DSL keyword might require that
one of its arguments be an object implementing a specified DSL.
Finally, RDL also allows programmers to implement DSLs entirely
in RDL, providing a much cleaner approach to Ruby DSL design.
(Section 2 describes RDL contracts.)

To illustrate the design behind our proposed system, we for-
malize DSL contract checking using �DSL, a core calculus. �DSL

includes four important features: standard contracts; DSL con-
tracts, which are structural checks against both the implementation
and use of a DSL written using a simple specification language;
premethods, used to ⌘-expand methods with contract checks; and
instance evaluation, which invokes a premethod under a specific
self binding. Premethods and instance evaluation are the key to
making DSLs lightweight, as they permit scopes to be introduced
and invoked without much fuss (i.e., without naming a method or
placing one in a class). We were able to implement all of this us-
ing Findler–Felleisen style higher-order contracts [15] as the basic
contracting mechanism. We prove that �DSL satisfies a contract era-
sure theorem—approximately speaking, programs that do not vio-
late contracts can have their contracts erased without affecting the
final result. (Section 3 presents �DSL and the erasure theorem.)

Another result of our work is a Ruby library that implements
RDL. The implementation works by creating proxies that ensure
that only methods in the DSL are used by clients of the DSL, and
not other utility methods that happen to live in the same class.
To do this, it wraps block arguments that are run under DSLs to
interpose appropriate checks during block evaluation. RDL also
includes specifications of basic type contracts and arbitrary pre-
and postconditions on language keywords. In addition to contract
checking, RDL contains a definition mode that allows developers to
give both a contract for and an implementation of a DSL simulta-
neously. (Section 4 describes RDL in detail.)

To test the applicability of RDL, we developed two dynamic
contract inference systems. The first, TypeInfer, uses observed val-
ues at run time to generate type contracts on method arguments
and returns. The second, DSLInfer, discovers structural informa-
tion about keyword scopes and nesting. There are several potential
uses of TypeInfer and DSLInfer, including giving developers a run-
ning head start in developing specifications, helping developers to
ensure that they have full coverage of their DSL in the test suites,
as well as helping users discern the structure of DSLs they use.

1 sox = Team.new ”Boston Red Sox” do

2 player ”David Ortiz” { hits 52; at bats 198 }
3 player ”Dustin Pedroia” { hits 62; at bats 227 }
4 end

5
6 sox. players .map { |p| p. stats .batting average }
7 # =ñ [0.309, 0.301]

Figure 1: Baseball DSL example

TypeInfer works by simply recording type values at runtime.
DSLInfer is more complex. It starts from a small set of examples
and generates candidate examples that modify the initial examples
by copying a keyword usage from one scope to another. DSLIn-
fer then runs the candidate examples to see which are valid and
which are rejected. From these results, DSLInfer discovers which
keywords are available in which scopes in the DSL, and from this
it generates a contract.

We ran TypeInfer and DSLInfer on eight Ruby DSLs. We found
that TypeInfer generally discovers useful types. However, in our
experiments TypeInfer observed relatively few calls to the DSL
methods, and hence the discovered types were sometimes impre-
cise, e.g., missing that a block argument may be optional because
all calls in the example programs supplied a block. We found that
DSLInfer generally worked quite well. We ran it on programs con-
taining a total of 112 initial keyword nesting pairs from the same
8 DSLs. DSLInfer inferred an additional 78 pairs with 8 false neg-
atives. Additionally, TypeInfer runs at essentially the same speed
as the test cases, and DSLInfer’s running time ranged from seconds
on most DSLs to minutes on two DSLs. (Section 5.2 describes con-
tract inference and our experiments.)

In summary, this paper presents what we believe is the first
formal account of Ruby DSLs; RDL, a library for both defining
and contracting DSLs in Ruby; TypeInfer, a tool for inferring
type contracts; and DSLInfer, an inference tool for discovering the
structure of existing DSLs and autogenerating RDL templates.

2. Ruby DSLs

In this section, we introduce Ruby DSLs and RDL by example.
First, we present an small illustrative Ruby DSL and some example
uses. Next, we show how RDL can specify the behavior of this DSL
using our contract system. Lastly, we build the example DSL using
RDL’s support for declaratively implementing DSLs.

An example Ruby DSL. Figure 1 illustrates the use of a small
example DSL that creates objects representing baseball teams. A
team instance is constructed via Team.new, passing the name of
the team as an argument and supplying a block that describes the
team’s players. Each player is defined using the player keyword,
which itself takes the player’s name as an argument and a block
giving the player’s hits and at bats. The stored information can
be used to compute statistics such as the player’s batting average.

While this code might not look it, in fact this is ordinary Ruby.
Here do ... end and { ... } delimit code blocks, which are premeth-
ods, i.e., lambdas that may also refer to self (which is implicitly
bound). Note that both ways of delimiting a code block are com-
pletely equivalent. One code block can be passed as an argument
to a method by placing it last in the list of arguments. Method
argument lists need not be parenthesized. Thus, player, hits, and
at bats are just method invocations with the implicit self receiver,
bound appropriately during the execution of the code blocks.

As we have just seen, a few key features enable Ruby DSLs to
have a very declarative syntax while still maintaining full language
access. However, despite the common use of DSLs in the Ruby

8 player spec = RDL::Dsl.new do

9 spec : player do

10 arg 0, String
11 dsl do

12 spec : hits do

13 arg 0, Integer
14 pre cond(”More hits than at´bats!”) { |h|
15 @at bats ? h < @at bats : true }
16 end

17 spec :at bats do

18 arg 0, Integer
19 pre cond(”Fewer at´bats than hits!”) { |a|
20 @hits ? a > @hits : true }
21 end

22 end

23 end

24 end

25
26 class Team
27 spec : initialize { dsl from player spec }
28 end

Figure 2: RDL Contract for the Baseball DSL

community, there is no standard way of documenting DSLs, much
less specifying their behavior in a machine-checkable way. Instead,
users must cobble together an understanding of a DSL from a
combination of examples and, if available, documentation of the
classes used in implementing the DSL. Because of this, it is easy
for there to be misunderstandings between the DSL implementer
and user. For example, suppose the user tries to call

player ”Mike Napoli” { hits 40; runs scored 17 }

If no runs scored method exists, Ruby throws a NoMethodError

exception. The same error is reported whether the mistake is in the
client (calling a keyword not intended to be there) or the DSL (fail-
ing to provide a keyword). Even worse, the user could successfully
call a method not intended to be part of the language, e.g.,

player ”Daniel Nava” { hits 10; dump stats ”nava.csv” }

Here, the utility function dump stats is not part of the DSL
for describing players, but rather a method meant to be used on
fully specified player objects. Note that because we are invoking a
method on self, even if dump stats were made private, it would
still be accessible within the block.

Specifying Ruby DSLs. To address these problems, we devel-
oped RDL to enforce contracts on DSLs. Figure 2 contains a short
RDL specification for the baseball DSL. Recall this DSL has two
sublanguages—inside of Team.new, player is in scope, and inside
of player, hits and at bats are in scope.

Lines 8–24 create a DSL contract—an instance of RDL::Dsl—
that includes the player keyword. Inside a DSL contract definition,1
the spec keyword defines contracts for individual methods, e.g.,
line 9 introduces a contract for the player method. Here we pass the
method name as a symbol (i.e., an interned string) :player because
in Ruby the bare method name player would be treated as a method
invocation. The contract for player calls arg 0, Integer (line 10) to
specify that the first argument given, the name of the player, is a
member of the String class. (RDL converts class values like String

into contracts that check objects for membership in that class.)

1 This is indeed a DSL for defining DSL contracts. It is not implemented in
terms of itself, however, since that would lead to infinite recursion.

The contract for player also uses dsl (line 11) to contract the
sub-DSL in the block argument to player. Here, that nested DSL
includes two keywords, hits and at bats. When player is executed,
we add checks that ensure that player runs the block argument with
a self object that contains those two methods. In addition, we check
that the block argument only calls those particular methods on self.

The hits and at bats keywords do not take block arguments, so
they do not use dsl. Instead, we add a contract on the first argument
of each that checks that only integers are provided. We also use
pre cond to specify a precondition for each method. If a client uses
the player DSL and any of the added checks fail, then RDL raises
an exception with a suitable error message. Lines 14–15 describe a
pre-condition that specifies if the field @at bats has been set, then
the argument to hits has to be smaller than @at bats.

As an aside, notice that we duplicated the relationship between
the values provided for hits and at bats in the two preconditions.
This is necessary because RDL cannot describe field invariants, as
Ruby does has no mechanism for intercepting field writes. We plan
to investigate adding such a mechanism to Ruby as future work.

The contract player spec is a first-class object, unattached to
any particular DSL implementation. To actually attach a contract
to a method, we call spec at the class level. For example, line 26
reopens the Team class2 and adds a contract on initialize (the
constructor method). That contract uses the form dsl from to add
the player spec contract to the block argument to initialize. In
other words, dsl from is just like dsl, but instead of taking a block
defining the DSL-sublanguage, it takes a instance of RDL::Dsl.

Contracts in RDL can also be applied to method arguments
in a higher-order fashion, and contracts can be combined. For
example, Figure 3 sketches how we might extend the baseball DSL
to print player records as the team is defined, where the printing
mechanism is abstract, e.g., so we can print baseball cards, create
webpages with players’ information, etc. On lines 29–33, we define
a contract for a formatting DSL that includes keywords such as
header and table that abstract over the precise method of printing.
Then on lines 35–39, we create a contract specifying that print’s
first argument is an object that conforms to print spec—meaning,
if that argument is bound to self during the execution of a block, it
provides the DSL keywords specified by print spec.

As before, we reopen the Team class to add the desired con-
tract. Here, we combine player spec and printable spec to create
a contract that makes both methods available within the block ar-
gument to Team.new and checks them appropriately. Finally, we
create a baseball team, and inside its definition we pass a new in-
stance of some printer object.

Implementing Ruby DSLs with RDL. Finally, RDL provides the
ability to define new DSLs completely from scratch, adding imple-
mentations as well as contracts for keyword methods. This allows
the user to implement DSLs in a more declarative fashion than is
otherwise possible. Without RDL, writing a DSL in Ruby requires
understanding of Ruby metaprogramming, including various forms
of run-time code evaluation.

The DSLs we have examined implement their keywords as
variations on this skeleton:

def keyword(args, &b)
... work to do before calling block ...
o = create DSL object

ret = o.instance exec(args to block, &b)
... work to do after calling block ...
ret

end

2 In Ruby, calling class C either creates a new class C if it did not previously
exist, or extends C with new definitions if it did previously exist.

29 print spec = Spec.new do

30 spec :header do ... end

31 spec : table do ... end

32 ...
33 end

34
35 printable spec = Spec.new do

36 spec : print do

37 arg 0, print spec
38 end

39 end

40
41 class Team
42 spec : initialize do

43 dsl from (Spec.merge player spec, printable spec)
44 end

45 end

46
47 class BaseballCardPrinter ... end

48
49 sox = Team.new ”Boston Red Sox” do

50 ...
51 player ”A.J. Pierzynski ” { at bats 166; hits 47; }
52 print BaseballCardPrinter .new
53 end

Figure 3: RDL Higher-order Contracts

That is, the code does some pre-processing, instantiates a DSL
object (either from an existing class or by creating a new class
on the fly), executes the block using instance exec to bind the
target object as self (possibly with some additional arguments to the
block), and then does post-processing. For most examined keyword
definitions, this code contains the only uses of metaprogramming
features, and so abstracting it out allows the programmer to focus
on what is different about their particular DSL, and frees them from
needing to be versed in Ruby metaprogramming.

Figure 4 contains an RDL implementation of the baseball DSL.
We begin by creating a class Stats to store the information asso-
ciated with a player. In Stats, we mix in the RDL module to gain
access to its methods. Then on lines 57–62 we use keyword to cre-
ate a method hits, in contrast to spec which would only contract an
existing method. In the block argument to keyword, we use action

to provide an implementation of the method being created—in this
case, assigning the argument to the instance variable @hits—and
we can still use contracting keywords like arg and pre cond as
before. The full implementation defines at bats (not shown) sim-
ilarly. Since batting average is not part of the DSL, we define it
normally. Thus, it is clear which methods are part of the DSL, and
this is enforced when a Stats object is used as a DSL.

To round out this DSL example, we need to implement Player
and Team. We omit the definition of Player, as it is a straightfor-
ward class that implements an appropriate data structure for storing
information about players. The definition of Team is on lines 72–
94. Of particular note here are the semantics of dsl forms within
keyword definitions and post task, a new form. For keyword def-
initions, using dsl instead of action specifies a default implemen-
tation that creates an object for the requested DSL, runs the block
argument under that object, and then returns the object. This allows
the DSL implementer to return information from nested languages.
The post task form takes a code block that is given the return
value and original arguments to the method as arguments and is
executed after the main implementation. The return value for the
code block is ignored, as it is only executed for effect. Our RDL
library rewrites player so that the new player implementation first

54 class Stats
55 extend RDL
56
57 keyword : hits do

58 action { |x| @hits = x }
59 arg 0, Integer
60 pre cond(”More hits than at´bats!”) { |h|
61 @at bats ? h < @at bats : true }
62 end

63 # similarly :at bats

64
65 def batting average()
66 (@hits / Float(@at bats)).round(3)
67 end

68 end

69
70 class Player ... end

71
72 class Team
73 extend RDL
74 keyword : initialize do

75 pre task { @players = [] }
76 dsl do

77 keyword : player do

78 arg 0, String
79 dsl Stats
80 post task { | r , n|
81 p = Player.new n, r
82 @players .push p }
83 end

84 keyword : print do

85 action { |p| @printer = p }
86 end

87 end

88
89 post task { | r , n|
90 @name = n;
91 @printer . instance exec {
92 header ”Players of #{n}”; table { ... }
93 } }
94 end

95 end

Figure 4: RDL Implementation of Baseball DSL

calls the original method and then calls the post task block. RDL
automatically transfers the arguments when a method is wrapped.

For player, on line 80 the post task receives the Stats object,
the return value of the DSL block, as the first argument r and the
name of the player as the second argument n. It uses these two
arguments to create an instance of Player. It then adds that Player
object to the accumulator @players. For initialize, the post task

sets the team’s name on line 90. It then runs a code block that
contains printing instructions using the previously set @printer

object. It does this using instance exec, which takes a code block
and runs it using the target of instance exec as self.

3. Formal Model of Ruby DSL Contracts

In this section, we present �DSL, a formal model of Ruby DSL con-
tracts layered on a simple object-oriented calculus extended with
Ruby-like blocks. We then use the model to prove an erasure prop-
erty: removing contracts from a well-behaved program does not
cause spurious changes in behavior. The next section will discuss
RDL’s actual implementation.

Syntax. Figure 5 gives the syntax of �DSL. A value v is either a
number n; a premethod �

Ñ́

x .e, a function whose body can refer to

v ::“ n | �

Ñ́

x .e | o

o ::“ rm “ �

Ñ́

x .e, . . .s

e ::“ x | v | self | e; e | let x “ e in e | e.mp

Ñ́

e q

| e.iexecpe,

Ñ́

e q | check

s

s

e � | blame s

� ::“ ' | � | delayp�q

' ::“ any | haspmq | p' and 'q

� ::“ dsl tm : p

Ñ́

� q, . . .u

p ::“ xe, o, Ey

E ::“ m | pC, oq ¨ E

C ::“ l; e | l.mp

Ñ́

e q | v.mp

Ñ́

v ,l,

Ñ́

e q | let x “ l in e

| check

s

s

l � | l.iexecpe,

Ñ́

e q | v.iexecpl,

Ñ́

e q

Figure 5: Syntax of �DSL

its arguments or self; or an object o that maps method names to
premethods. Other than values, expressions e also include variable
names, self, sequencing, local bindings via let, and method calls.

Premethods in �DSL are invoked with iexec, whose name comes
from Ruby’s instance exec, which, as seen earlier, is used to exe-
cute blocks of code with a particular self. In a call e0.iexecpe1,

Ñ́

e q,
e1 is the premethod being invoked, Ñ́

e are the arguments passed to
the premethod, and e0 is bound to self within the call.

Contract checking in �DSL is expressed as check

sp
sn e �, where

e is the value to contract, � is the contract, s
p

names the provider
of the value, and s

n

names the client that receives the value. These
last two strings are used to appropriately blame the party that fails
to satisfy a contract [15]. Blame is represented as an expression
blame s, where s is the name of the party at fault.

First order contracts (') check immediate properties of values.
The simplest �DSL contract is any, which is satisfied by any value.
The contract haspmq checks that an object contains a method m

(this is essentially a type contract in our formalism), and the inter-
section contract p'1 and '2q checks that the value satisfies both '1

and '2. It is straightforward to extend �DSL to include other stan-
dard contracts on values [15, 30]—e.g., to support preconditions as
in Section 2—but we do not do so to keep �DSL simpler.

The last two contract forms are used for DSLs. A DSL contract
(�) maps method names to a sequence of contracts for the method
arguments. Such a contract is satisfied by an object that implements
the specified DSL, i.e., that has methods of the same names whose
arguments also satisfy the given contracts. For example, in Fig-
ure 3, we invoked arg 0 print spec to require the first argument of
print satisfy the print spec DSL. In �DSL, printable spec corre-
sponds to dsl tprint : pdsl theader : p. . .q, table : p. . .q, . . .uqu.

The last contract form is delayp�q, which checks a premethod
such that, when called, its self object must conform to �. We
call it delay because the � contract is delayed until premethod
invocation time. For example, in Figure 2, we created player spec,
which contains a method player that runs its block argument under
the specified DSL. In �DSL, this contract corresponds (roughly) to
dsl tplayer : pdelaypdsl thits : p. . .q, at bats : p. . .q, . . .uqqu.

Semantics. We give semantics to �DSL using a standard CK ab-
stract machine [13] extended with a slot for self. Thus, program
states for the machine (p) are of the form xe, o, Ey, where e is the
current expression to reduce, o is the current self object, and E is
the context under which the current expression is reduced. A con-
text is either the empty context (m) or a sequence of contexts be-
ginning with a pair of the most recent context frame and the object
bound to self in that frame.

xblame s, o, Ey ›Ñ xblame s, o,my pBLAMEq

xself, o, Ey ›Ñ xo, o, Ey pSELFq

xv; e, o, Ey ›Ñ xe, o, Ey pSEQq

xlet x “ v in e, o, Ey ›Ñ xe rx fiÑ vs, o, Ey pLETq

xo

t

.mp

Ñ́

e q, o

s

, Ey ›Ñ xo

t

.iexecp�

Ñ́

x

m

.e

m

,

Ñ́

e q, o

s

, Ey pMETHq

where o

t

“ r. . . ,m “ �

Ñ́

x

m

.e

m

, . . .s

xo

t

.iexecp�

Ñ́

x .e,

Ñ́

v q, o

s

, Ey ›Ñ xe r

´́ Ñ́

x fiÑ vs, o

t

, Ey pIEXECq

xcheck

sp
sn v any, o, Ey ›Ñ xv, o, Ey pANYq

xcheck

sp
sn n haspm

s

q, o

s

, Ey ›Ñ xblame s

p

, o

s

, Ey pHAS-ERR-NUMq

xcheck

sp
sn p�

Ñ́

x .eq haspm

s

q, o

s

, Ey ›Ñ xblame s

p

, o

s

, Ey pHAS-ERR-PREq

xcheck

sp
sn o haspm

s

q, o

s

, Ey ›Ñ xblame s

p

, o

s

, Ey pHAS-ERR-METHq

where o “ r. . . ,m

o

“ �

Ñ́

x .e, . . .s and m

s

R t...,m

o

, . . .u

xcheck

sp
sn o haspmq, o

s

, Ey ›Ñ xo, o

s

, Ey pHASq

where o “ r. . . ,m “ �

Ñ́

x .e, . . .s

xcheck

sp
sn v p'1 and '2q, o, Ey ›Ñ xcheck

sp
sn pcheck

sp
sn v '1q '2, o, Ey pANDq

xcheck

sp
sn n �, o, Ey ›Ñ xblame s

p

, o, Ey pDSL-ERR-NUMq

xcheck

sp
sn p�

Ñ́

x .eq �, o, Ey ›Ñ xblame s

p

, o, Ey pDSL-ERR-PREq

xcheck

sp
sn o �, o

s

, Ey ›Ñ xblame s

p

, o

s

, Ey pDSL-ERR-METHq

where � “ dsl t. . . ,m

s

: p

Ñ́

�

s

q, . . .u and o “ rm

o

“ �

Ñ́

x

o

.e

o

, . . .s and m

s

R t...,m

o

, . . .u

xcheck

sp
sn o �, o

s

, Ey ›Ñ xblame s

p

, o

s

, Ey pDSL-ERR-ARGSq

where � “ dsl t. . . ,m : p

Ñ́

� q, . . .u and o “ r. . . ,m “ �

Ñ́

x .e, . . .s and |Ñ́� | ‰ |Ñ́x |
xcheck

sp
sn o �, o

s

, Ey ›Ñ xlet x

o

“ o in o

1
, o

s

, Ey pDSL-OBJq
where x

o

fresh
and � “ dsl tm

s

: p�1, . . . ,�n

q, . . .u

and o “ rm

s

“ p�x1, . . . , xn

.e

s

q, . . . ,m

i

“ �

Ñ́

x

i

.e

i

, . . .s

and e

1
s

“ let x1 “ check

sn
sp x1 �1 in . . . let x

n

“ check

sn
sp x

n

�

n

in x

o

.m

s

px1, . . . , xn

q

and o

1
“ rm

s

“ p�x1, . . . , xn

.e

1
s

q, . . .s

xcheck

sp
sn n delayp�q, o, Ey ›Ñ xblame s

p

, o, Ey pDELAY-ERR-NUMq

xcheck

sp
sn o delayp�q, o

s

, Ey ›Ñ xblame s

p

, o

s

, Ey pDELAY-ERR-OBJq
xcheck

sp
sn p�

Ñ́

x .eq delayp�q, o, Ey ›Ñ x�

Ñ́

x .pcheck

sn
sp self �q.iexecp�

Ñ́

x .e,

Ñ́

x q, o, Ey pDELAY-PREq

Figure 6: Core rules

Figure 6 gives the core reduction rules for the abstract machine.
The first group of rules, which form our object calculus base, are
straightforward. Rule (BLAME) escapes from the current context,
propagating the blame error to the top level. Rule (SELF) fetches
the current self object out of the program state. Rule (SEQ) eval-
uates the first expression, then discards the result to evaluate the
second. Rule (LET) binds a value to a local variable by substituting
the value for the name in the body. Rule (METH) looks up the cor-
responding premethod for the given method name. Instead of eval-
uating the premethod directly, it delegates to Rule (IEXEC), which
takes a premethod and evaluates its body, setting the target object
o

t

as the new self. This rule does not need to store the current self,
since that is restored if necessary by the context popping rules.

The rest of the core rules describe how a check expression
checks a contract against a given value. Rule (ANY) checks any

contracts, which always succeed and produce the original value.
Rules (HAS-ERR-NUM) and (HAS-ERR-PRE) catch the cases
where a non-object is provided, Rule (HAS-ERR-METH) errors if
the object does not contain the requested method, and Rule (HAS)
encodes a successful contract check. Rule (AND) applies each
contract to the desired value in turn, thus composing the contract
checks appropriately.

The next set of rules check DSL contracts. The first two rules
trigger an error when checking a non-object value. Rule (DSL-
ERR-METH) triggers an error if object o does not have some method
m

s

listed in the contract. Rule (DSL-ERR-ARGS) triggers an error
if object o has a method m listed in the contract such that the
arity of m in the object and in the contract differ. Since all four
error cases are due to the provider of the value, the blame string

corresponding to the provider are used in the resulting blame error.
For example, in check

p

c

rs pdsl tadd : p. . .quq, p is blamed for the
failure since it provided an object that does not contain an add

method. Here, p stands for the blame information for the provider
of the empty object, and c stands for the client that would receive it
in the absence of the contract failure.

Finally, Rule (DSL-OBJ) applies a DSL contract to a suitable
object o. Just as in higher-order contracts for functions, DSL con-
tracts must be deferred until the methods of o are actually invoked.
The rule achieves this by creating a proxy object o1 containing all
the methods m

s

in the DSL contract, but not the methods m
i

that
appear in o but not in the contract. The body e

1
s

of each method m

s

checks that each argument x
i

matches the corresponding contract
�

i

for that argument. If all checks pass, it delegates the call m
s

to
the underlying object, which is bound to x

o

. Note that the argu-
ments are checked using swapped blame, since the arguments are
values coming from the client that invoked the method. That is, in
the following expression:

pcheck

p

c

rhits “ �x.e

b

s pdsl thits : p�

h

q, ...uqq.hitsp147q

the client can be seen as sending the value 147 through the contract
check as an argument to the premethod implementation �x.e

b

of
the provider. If the client fails to provide a value that passes the
corresponding contract �

h

, then the client should be blamed. Thus,
the check in the new proxy object is check

c

p

147 �

h

, with the client
as the provider of the value 147 and the server as its consumer.

The last three rules check higher-order DSL contracts (delay).
The first two fail and blame the value provider if a non-premethod
value is provided. Rule (DELAY-PRE) takes the premethod and

xe1; e2, o, Ey ›Ñ xe1, o, pl; e2, oq ¨ Ey pPUSH-SEQq

where e1 is not a value
xv, o

1
, pl; e, oq ¨ Ey ›Ñ xv; e, o, Ey pPOP-SEQq

Figure 7: Example context rules

creates a new premethod that delays the DSL contract check. When
executed, the new premethod first checks the DSL contract on self

and then executes the original premethod on the resulting object.
Since the client provides the self object, that is, the client receiving
the premethod chooses on which object the premethod should be
evaluated, the rule swaps the blame strings for the internal check.
This meshes with the blame swapping for arguments in Rule (DSL-
OBJ), as self is an implicit argument of the premethod.

Context Handling. The remaining abstract machine rules man-
age context frames. There are two types of context rules: those that
drill down to find a reducible expression, pushing frames onto the
context; and those that place values back into their proper context
and restore the corresponding self object. Figure 7 gives an exam-
ple of each type of rule. A corresponding rule for each expression
type is needed. Rule (PUSH-SEQ) takes a state whose expression is
a sequence that begins with a non-value. The resulting state is the
head of the sequence, and the new context is the old context with an
initial frame pushed that stores both the rest of the sequence and the
current self object. Rule (POP-SEQ) is the inverse operation: if the
state contains a value as its expression and the top frame contains
the remainder of a sequence, then the new state has the sequence
with the value as the new head as the expression to evaluate and the
old self object restored.

3.1 Contract Erasure

Once we have a system of contracts for our language, program-
mers can use those contracts to describe their expectations about
program behavior separately from the code that implements the be-
havior. However, we want to make sure that contracts do not alter
the behavior of already correct programs in unexpected ways. We
now prove this formally similarly to Findler and Felleisen [15].

First, we define a metafunction ERASErress that takes an expres-
sion e and removes all contract checks. We elide the definition of
ERASErr¨ss here for space reasons; it simply walks the expression
and replaces every use of check with its first argument.

Second, we define a metafunction EVALrress that evaluates an
expression and then either returns the result, for a number, or
abstracts it to a result summarizing the kind of value or error:

EVALrress “

$
’’’’’’’&

’’’’’’’%

n if xe, rs,my ›Ñ

˚
xn, rs,my

block if xe, rs,my ›Ñ

˚
x�

Ñ́

x .e, rs,my

obj if xe, rs,my ›Ñ

˚

xrm “ �

Ñ́

x .e, . . .s, rs,my

blame: s if xe, rs,my ›Ñ

˚
xblame s, rs,my

error if xe, rs,my ›Ñ

˚
p and

Ep

1
.p ›Ñ p

1

We need this abstraction step because programs with contracts do
actually produce syntactically different blocks and objects than
non-contracted programs—recall rules (DELAY-PRE) and (DSL-
OBJ), which ⌘-expand or proxy calls and then add contract checks.
Note that the evaluator is a partial function since the expression
may not terminate.

Now we can state the following contract erasure theorem:

THEOREM 3.1. For all e, if EVALrress is a number, “block,” or
“obj,” then EVALrress “ EVALrrERASErressss.

Proof sketch. We look at the trace of reductions for both the
unerased and erased programs. We set up an approximation relation

xCSpecy ::= Class | Range | flat Proc

| and Contract, . . . | or Contract, . . .
| create spec do xMSpecy

˚
end

xMSpecy ::= spec Symbol do xSClausey

˚
end

| keyword Symbol do xKClausey

˚
end

xSClausey ::= pre cond String? Block

| pre task String? Block

| post cond String? Block

| post task String? Block

| arg Nat, Contract

| opt Nat, Contract

| rest Nat, Contract

| ret Contract

| dsl do xMSpecy

˚
end

| dsl from Contract

xKClausey ::= xSClausey | action Block

| dsl Class

Figure 8: RDL Contract DSL

that relates values in the trace for the unerased program to values
in the trace for the erased program. For most steps, this just relates
values placed into corresponding contexts in the two programs. In
the case of check reductions, though, the approximation maps the
result of the check expression to the corresponding unaltered value
in the erased program. Program states in the trace for the unerased
program are then approximately equal to program states in the trace
for the erased program if the values in the unerased state map to the
corresponding value in the erased state.

Since operations on checked (proxied) values eventually reduce
to the same operation on unchecked values, with possibly proxied
arguments, we show our reduction relation respects this approxi-
mation, modulo the extra reduction steps introduced by contracted
values in the unerased program. That is, the two programs reduce
similarly except for the reduction of contracted values, which starts
and ends with states approximately equal to the same state in the
checked program. We use this fact as the basis for a stuttering
equivalence between the two traces. We also show approximately
equal values are equal under the EVAL metafunction. ⌅

4. Implementing RDL

In this section we describe our implementation of the formal model
from Section 3.3 The RDL library must perform three major tasks to
check contracts: affirming that a DSL object contains the expected
methods, checking uses of those methods against the correspond-
ing method contract, and catching uses of non-DSL methods. We
explain the first two by describing contract values in RDL and the
last by illustrating how RDL checks a DSL during block evaluation.

Creating contracts. The implementation of the contracts in RDL

follows the idea of contracts as pairs of projections [14]. Here, a
projection maps values to similar values that behave the same mod-
ulo the addition of contract errors where appropriate. Figure 8 de-
scribes our contract language as a grammar. We use Kleene star to
denote zero or more of the same item, and question mark to denote
zero or one. Italicized terminals denote either block arguments or
expressions that should return an object of the specified class. For
example, Symbol denotes expressions that evaluate to symbols, and
Dsl expressions that evaluate to a DSL contract value.

3 Our implementation can be found at https://github.com/plum-umd/
rdl/tree/dsl_paper.

The xCSpecy production describes our contract constructors.
We allow some Ruby values, such as classes and ranges, to be used
as contracts directly; internally they are converted to an appropriate
projection. Any predicate procedure can be turned into a contract
using the flat keyword, and the and and or keywords provide
contracts that check values as being, respectively, in the intersection
or the union of the listed contracts. Finally, create spec creates a
first-order contract that checks an object against a given DSL.

As we saw in Section 2, RDL also uses the keywords spec and
keyword to add contracts to methods directly. Figure 8 shows these
keywords (as xMSpecy) and the full language allowed in their block
arguments; xSClausey represents clauses allowed in uses of spec,
and xKClausey represents clauses allowed in uses of keyword.

We have already seen almost all of RDL’s features in section 2.
The forms spec and keyword protect existing keywords or create
new keywords, respectively. Inside spec, pre- and post-conditions
can be given with pre cond and post cond. The forms pre task

and post task are run before or after, respectively, the associated
keyword, for their effect only. The form arg takes an argument
number and applies the given contract to it, replacing the original
argument. The opt form performs similarly, but allows the argu-
ment to be optionally provided. The rest form takes the number
of the last required argument and applies the given contract to any
subsequent arguments. The ret form applies the given contract to
the return value of the keyword. The dsl form describes a DSL used
in the block argument to the keyword. The dsl from form also de-
scribes a DSL, but using an existing DSL contract value.

Inside of keyword, all the features of spec are available. Addi-
tionally, the user can supply either an action block given the imple-
mentation of the keyword or the form dsl Class to indicate a fresh
instance of that class should be the DSL for the keyword’s block
argument (as in Figure 4).

Contract Values. In addition to directly defining contracts in
classes, RDL also supports first-class contract values. RDL::Dsl.new
creates a new contract value and takes a block of method specifi-
cations using the same grammar xMSpecy defined above. Once a
contract value is defined, it supports three operations: extension,
merging, and application. The function RDL::Dsl.extend takes a
contract to extend and a block of method specifications to add to
that contract. Similarly, RDL::Dsl.merge combines multiple DSL
contracts as we saw in Figure 3. When merged, method specifica-
tions for the same method are all applied in the merged contract, but
only one keyword definition is allowed for a given name. Finally,
RDL::Dsl.apply applies a DSL contract to a class.

When a DSL contract is applied, it first checks that the class
has all the methods listed in spec clauses and that it does not
contain any method listed in the keyword clauses. It then replaces
the spec-described methods with shims that check the contract and
call the original implementation. Any keyword-described methods
are created with their action clause, if any, serving as their main
body. If a keyword description contains a dsl clause that takes a
class value like in xKClausey, then the created method creates an
instance of that class and executes the block argument on it. Any
restrictions from {pre,post} {cond,task} are then added either
before or after the method is run. The pre cond form, for example,
becomes a check prior to calling the method that raises an error with
the appropriate message if it fails.

The spec and keyword methods that can be mixed in by in-

clude RDL are implemented similarly. Their implementation can
be thought of as taking a DSL contract that contains only that
method contract and applying it to the current class.

Checking Contracts on Blocks. The dsl and dsl from forms
from xSClausey serve the same purpose as the delay contract in
�DSL. Recall from (DELAY-PRE) from Section 3 that, when check-

ing block contracts, we must delay the check on self until the block
is called. In �DSL, blocks (a.k.a. premethods) are first-class values,
but in Ruby, blocks are second-class values. Fortunately, Ruby al-
lows blocks to be converted to instances of class Proc, and those
instances are first-class. Thus, for dsl and dsl from forms, RDL in-
serts code that creates a new Proc that serves as an ⌘-expansion of
the original block. This new Proc is passed to the original method
instead of the original block.

When executed, this Proc first constructs a proxy that inter-
cepts calls for the original self and adds delegates for each spec.
Each delegate checks the clauses listed in the spec block and calls
the original method as its main action. Analogously, uses of key-
word create new methods in the proxy. To signal a contract fail-
ure when a non-listed method is called, the proxy also defines a
method missing method, which is Ruby’s hook for handling calls
to undefined methods. After constructing the proxy, the Proc then
evaluates its block argument with the proxy bound to self.

5. Inferring DSL Contracts through Testing

To evaluate the expressiveness of RDL, we developed a pair of con-
tract inference systems for discovering RDL contracts for existing
DSLs. As mentioned earlier, these DSLs are currently implemented
in complex ways that make static analysis difficult. Instead, we
opt for a purely dynamic approach, using test cases to drive in-
ference. We infer two kinds of contracts: first-order contracts in-
volving types using TypeInfer, and structural contracts for lexical
scoping using DSLInfer.

5.1 Contracts for Types

We use a simple approach to infer method types dynamically: we
observe the values passed as parameters and returned as results, and
record their classes. We then combine this information across all
calls observed under a given test suite, and generate contracts that
constrain types to at most those seen. More specifically, we contract
the arguments (including optional and variable length arguments)
and return types, as well as whether a block argument is allowed.

We implement this strategy by using RDL’s pre task to add the
necessary hook to record the class of each argument and return, and
whether a block was passed to the method. We use the following
algorithm to combine information from multiple calls:

• The type of each argument position is the union of the observed
types. If different invocations to the same method have different
argument sizes, then we generate a contract for regular argument
types for positions 0..n-1, where n is the smallest argument size. In
this case we also add a contract on the “rest” argument restricting
the type to be the union of all types observed in the other positions.
If the size of the rest argument is 1, we change the contract on the
rest argument type to a contract on the optional (default) argument
type; we developed this heuristic because in our subject programs,
there was at most one default argument.

• If a block argument is passed to all calls to the method, we add a
contract that requires a block argument.

• We add a contract indicating the type of the return value is the union
of all observed types of return values.

For a test suite, we use a set of example programs illustrating
DSL usage, like the code in Figure 1. Most DSLs in Ruby include
at least one such example, if not many.

5.2 Contracts for DSL Structure

Inferring DSL structural contracts is more complex. Since Ruby
DSL implementations can avail themselves of the full power of
Ruby, in theory the structure could be arbitrarily capricious. How-
ever, after examining a number of examples, we hypothesized that

ex.rb Candidate
generation

test.rb Run tests

orig-
dsl.rb

lang'
.txt

Spec gen spec.
rbLogging

langn
.txt

Figure 9: DSLInfer Architecture

in practice, most existing DSLs have a fairly simple structure: we
assume DSLs can be described as a set of (possibly mutually recur-
sive) RDL contracts without pre- and postconditions.

For example, given the actual Baseball DSL program in Fig-
ure 1, we want to be able to infer the DSL contracts in Figure 2,
minus the pre cond blocks and the type contracts. We can use a
graphical representation of the baseball DSL contract to make the
output of inference more intuitive:

hits
at_batsTeam.new player

Here the bullet-shaped node represents the method that enters the
DSL (in this case, Team.new). The rectangular nodes represent
RDL contracts for each sublanguage, e.g., the rightmost sublan-
guage allows calls to hits and at bats. An arrow from a keyword
k to a sublanguage l indicates l’s keywords are in scope in the block
argument to k. For example, hits and at bats can be nested inside
the player block.

We developed DSLInfer, a tool whose goal is to infer such a
graph, i.e., to discover the language scopes, keywords, and nesting
structure. Again, we use a dynamic approach. We begin with the
same test suite as in Section 5.1, but we immediately face a prob-
lem: in our experience, while these examples provide useful type
information, they often do not capture the full DSL structure.

Thus, DSLInfer systematically generates from the test suite a set
of new candidate examples that may or may not be in the DSL. We
then use the actual DSL implementation as an oracle to determine
which candidates are valid. From the original examples and the
valid candidates, we create an RDL specification.

The key to making the inference process efficient is to limit
the number of candidates. DSLInfer exploits an observation we
made of the DSL usage examples: while they may not show every
possible keyword placement, they typically do use every keyword
at least once. Thus, DSLInfer works by shuffling around keyword
calls in the examples to determine if those keywords can appear in
other places. Moreover, since those keywords are actually methods
defined in classes, DSLInfer uses class information to decide which
keywords might be in scope.

DSLInfer Architecture. Figure 9 illustrates DSLInfer in more
detail. The first step of DSLInfer is to discover what classes con-
tain each keyword, and in which block arguments those classes are
bound to self. We extract this information dynamically by running
the examples with inserted logging code. First, we manually com-
bine the example test programs into a single file via concatena-
tion (not shown).4 DSLInfer uses the Ruby Intermediate Language
(RIL) [19], a tool designed for exactly this kind of use, to parse
in the example programs and replace each call m(args...) with-
out an explicit receiver (i.e., a potential keyword call) with a call
to dsl log(:m, stmt id, args...). Here, m is the method name,
stmt id is the unique RIL statement id, and args are the original

4 No example uses side effects such that concatenation would be unsafe.

1 D.entry do # self = A

2 outer1 do # self = B

3 inner1
4 end

5
6 outer2(0) { inner2(0) } # self = C

7 outer2(1) { inner2(1) } # self = C

8 end

Figure 10: Candidate generation example

parameters. When called, dsl log records its arguments, current
class and call stack information, and then calls m.5

The output of this process is a series of files langn.txt, where
each file contains four pieces of information about a single keyword
k that runs its block in a DSL:

•
method: k and the class that contains k,

•
lang: the class of objects k uses to evaluate block arguments,

•
used methods: the methods used in block arguments to k, and

•
lang methods: the methods used in block arguments to all
keywords sharing the same DSL (i.e., lang).

From this, we determine candidate keywords that might potentially
appear in k’s block argument, but did not in the examples. To do
this, we first collect all the keywords in lang methods and the
methods in the lang class that appear in the lang methods for
any class that shares a common ancestor with lang. From that set,
we remove all the keywords that appear in used methods. The
remaining keywords are our candidate keywords. Thus, for each
candidate k

1, we now have a set of keyword pairs k Ñ k

1, where
k

1 is a candidate keyword that potentially could appear in the block
argument to k (here, the arrow corresponds roughly to an edge in
the graph representation of a contract).

Next, for each keyword pair k1 Ñ k2, DSLInfer copies one
existing use of k2 into a block of k1; below, we illustrate the pro-
cess and explain the choice of which k1 and k2 instances to use.
Note we only construct one test case for each candidate keyword,
even if multiple calls to the keyword are observed in the origi-
nal example—this helps reduce the number of candidates. When
DSLInfer copies a call to k1, it also must copy any statements that
the arguments depend on. The translation to RIL normalizes the
code so that all method arguments are variables. Thus, DSLInfer
also needs to copy the latest assignment x

i

“ e

i

to each variable
argument x

i

. If e

i

contains uses of variables, those variables are
copied and the process is repeated. More complex dependencies,
e.g., involving block arguments, are currently ignored.

Candidate Generation Example. We illustrate the candidate gen-
eration process by example. Consider the DSL usage example in
Figure 10. At the top-level, the call D.entry invokes the DSL. Dur-
ing that call, self is an object of class A while the block argument
is evaluated. That block uses two keywords, outer1 and outer2. In-
side outer1’s block argument, self is an object of class B and the
keyword inner1 is used. Inside outer2’s block argument, self is an
object of class C and the keyword inner2 is used.

If A, B, and C are all different classes, then there are no
candidate keywords to generate—the only blocks that use the same
class are the arguments to outer2, and they both use the same
keyword, inner2.

5 Note that not all receiver-less calls correspond to keywords, e.g., the print-
ing method puts from the Kernel module, whose methods are mixed into
Object as private methods. To eliminate such calls from being considered
keywords, dsl log ignores calls to private methods.

Now suppose that B “ C. In this case, DSLInfer identifies
two candidate keywords—inner2 could potentially appear within
the block argument of outer1, and inner1 could potentially appear
within the block argument of outer2. Thus, DSLInfer generates
two candidate example programs. Each candidate takes one of
the inner keyword uses and copies it to a block argument of the
other outer keyword. Notice that there are two possible calls to
inner2 that could be copied. DSLInfer chooses one such call at
random among all calls whose dependencies can be fully resolved,
Similarly, if DSLInfer has multiple possible blocks to copy into like
with outer2, it chooses one at random.

Furthermore, suppose that A “ B “ C. Now, in addition to the
previous candidates, there are four more: each outeri could appear
within the other outerj or within itself (recursively). To generate
these candidates, DSLInfer copies the entire call, e.g., it copies
line 7 just before line 3. For the recursive cases, DSLInfer only
copies a block within itself once. For example, lines 2–4 are copied
to just before line 3 to form one candidate.

Specification Generation. Now that DSLInfer has candidate pro-
grams, it runs them by invoking the actual DSL implementation,
and tests whether they execute successfully or raise an excep-
tion. For each passing test, it concludes the keyword pair added
is valid and records that fact in lang

1
.txt. DSLInfer then combines

the language description in the original examples, langn.txt, with
lang

1
.txt to calculate the graph structure of the DSL.

Once DSLInfer has the inferred graph structure of a given DSL,
it is straightforward to translate that graph to a skeleton RDL

specification that contains only structural information about the
DSL. In that specification, DSLInfer creates a DSL contract for
each language, where there is a spec contract for each keyword in
the language. For keywords that run a block argument in a different
DSL, the spec’s block contains a call to dsl from with the contract
for the target language, otherwise the block is empty. After the
DSL contracts are created, the specification then reopens each class
containing an entry method and adds a spec contract for that entry
method that calls dsl from with the appropriate DSL contract.

6. Experimental Results

We ran contract inference on examples for eight Ruby DSLs to
infer method types and structures. We selected the DSLs by starting
with several Ruby gems (i.e., packages) that we use regularly, like
Routing and Backup. We also searched for additional Ruby DSLs;
in particular, ones that work with the latest version of Ruby with no
external dependencies (e.g., no need for resources like an Amazon
cloud account). In the end, we found these subject programs:

• Backup, a DSL for describing backup tasks;
• Cardlike, a DSL for developing and testing card games;
• Graph, a DSL for producing Graphviz dot documents;
• Osheet, a DSL for creating and specifying spreadsheets;
• Rose, a DSL for making report tables;
• Routing, the Ruby on Rails routing language, a DSL for mapping

URLs to controller methods that handle requests;
• StateMachine, a DSL for finite state machines; and
• Turtle, a DSL for creating Resource Description Framework (RDF)

documents.

For each DSL, we either combined the example programs included
with the DSL into one example program or, if there were no such
programs, constructed our own example from the DSL’s documen-
tation. We ignored certain example programs where methods are
defined dynamically; we discuss this more later.

DSL S Y {¨} ˚ o F1 F2 F3 F4
Backup 8 X X X
Cardlike 7 X X X
Graph 23 X X X X X
Osheet 26 X X X X X X X X
Rose 11 X X X X X
Routing 11 X X X X X
StateMachine 9 X X X X X X
Turtle 8 X X X X X X X X

S = number of methods with contracts
Y = union types, {¨} = block types, ˚ = vararg types, o = optional arg

Figure 11: Type Contract Inference Results Summary

6.1 Types

We ran the DSL method type contract inference on the same key-
words used in the DSLInfer experiment. Figure 11 summarizes the
results. We do not report performance because the overhead is neg-
ligible, as the DSLs are typically only run once during an execution.

For each DSL, the middle group of columns lists the number of
DSL methods with inferred contracts, followed by columns indicat-
ing whether various type contract features occurred for that DSL:
union types, block argument presence, varargs, and optional types.
As expected based on reports for previous Ruby programs [27],
these features are present across many examples, and the algorithm
infers a wide range of useful types.

We then manually examined the example programs and the
output of our contract inference to see where it discovers less
precise information than possible. The rightmost column reports on
the result. We found four different categories where our lightweight
contract inference failed in some sense, as follows.

F1 - Misses Argument Types, F2 - Misses Return Types. In some
test cases, the example programs only observe one type used as an
argument or return, but other types are valid. This happened at least
once in every program. One common case is only observing String

or Symbol for an argument, but this argument can be any type with
to s defined on it because the method argument is too permissive.

F3 - Incorrectly Infers Block Argument is Required. We gener-
ate a contract that requires a block argument if all calls for the same
method contain a block argument, but this may not be the case. The
source code may have default behavior when no block is given or
may not use the block on all paths. This was also a very common
source of imprecision.

F4 - Incorrectly Infers Default Arguments / Variable Length Ar-
guments. This category includes imprecision due to incorrectly
inferring where the vararg starts, or inferring a default argument as
a vararg or vice-versa. For example, suppose we have method def-
inition foo(*args) with observed runs foo(1) and foo(1, 2). Then
we will imprecisely infer that foo has a regular parameter at posi-
tion 0 and a default parameter at position 1. In general, this cate-
gory arises because contract inference looks only at the number of
arguments passed to the method.

A more effective implementation can fix this type of error by
using Ruby’s parameter information and actual argument positions
to match each argument with its corresponding formal parameter.

Discussion. In principle, the first three sources of errors can be
eliminated when the example programs have complete path and
type coverage. Thus, one potential approach to reduce these errors
would to automatically generate additional test cases, like DSLIn-

fer, to increase the number of method calls seen. However, it seems
non-trivial to find argument values of the right type to make a
method run successfully without having any prior knowledge.

Example Init. # Cands. Final Run Miss.
DSL LoC (#) Pairs Pass Fail Pairs Time Pairs
Backup 39 (1) 6 ¨ ¨ 6 1.28s ¨

Cardlike 22 (1) 6 ¨ ¨ 6 1.79s ¨

Graph 126 (5) 27 16 1 43 25.1s ¨

Osheet 644 (6) 27 11 112 38 9m49s 4
Rose 157 (1) 11 1 ¨ 12 2.23s ¨

Routing 55 (1) 15 23 12 38 2m33s ¨

StateMach. 101 (4) 10 2 3 12 3.21s 3
Turtle 72 (5) 10 25 1 35 1.59s 1

Figure 12: DSLInfer Results Summary

6.2 DSL Structures

Effectiveness of Structural Inference. Figure 12 numerically
summarizes the effectiveness of structural inference. Recall that
a keyword pair k1 Ñ k2 indicates keyword k2 may be used in the
block argument of k1. The second column in the table lists the total
lines of code in the example programs with the number of example
programs in parentheses. Most of the example programs are fairly
small, ranging from 22 to 157 lines of code for all initial programs
combined, with the exception of Osheet, whose example programs
have 644 lines of code. The table also lists the number of keyword
pairs found in the initial example program for the DSL, the number
of passing and failing candidate programs for possible keyword
pairs not found in the initial example programs, the total number
of valid keyword pairs found by DSLInfer, and the running time
of DSLInfer on that DSL—this includes the time to generate the
test cases and to run them. The last column reports the number of
missed pairs, i.e., those tested for by a failed candidate program,
yet there exists some other program containing the pair that would
succeed. We describe these cases in more detail below. Note that
some DSLs have no failed candidate programs, and such DSLs do
not contain any missed keyword pairs.

Overall, even with our unsophisticated candidate generation
strategy, many candidate programs passed; this shows the tremen-
dous flexibility in most Ruby DSLs. Our results also show that
structural inference is highly effective for these examples. Our sys-
tem inferred valid keyword pairs not covered by the original ex-
ample programs in 6 of the 8 DSLs; the other two were completely
covered by the original example programs. For a few of these DSLs,
our system inferred a significant number of valid additional key-
word pairs with a small number († 10%) of false negatives. For
instance, in Routing, we took an example program that contained
15 keyword pairs and inferred 23 additional valid keyword pairs.

In addition, the running time for DSLInfer is generally low,
with most experiments taking less than four seconds. Osheet takes
the most time. The original example programs for Osheet contain
many small uses of the DSL, and test only a few of all the possible
combinations. In addition, all DSL methods are defined in one
class. This means that there are a large number of possible pairings
to try, so candidate generation is slow. Routing also takes a lot
of time, because each test run requires loading the entire Rails
framework, which is slow.

Inferred DSL Contracts. Here, we look at DSLInfer’s results in
more detail. Figure 13 shows three example contracts that were
inferred for subject languages Graph, Osheet, and Routing. These
are some of the larger DSLs, and they are still fairly small and
simple. There are fewer than a dozen keywords in most DSLs
(Graph is an outlier with 23 keywords, elided in the figure), and
most DSLs have relatively few sublanguages. We next examine the
graph for each DSL in turn, and then discuss the remaining DSLs.

Figure 13a shows the structure of Graph. This DSL contains
one language with an entry method digraph that can contain nested

calls to the DSL via subgraph. The example programs generated by
our system show that digraph can contain calls to all the keywords,
and subgraph can contain calls to all but save. The candidate
program containing subgraph Ñ save is the only failed candidate
program in this DSL. This is not a missed pair because one of
the dependent programs generates a syntax warning when this
pair is used. Our inference splits the language into two sets of
keywords that differ only in containing save. Of particular note is
that subgraph can also contain nested subgraph calls.

Figure 13b shows the structure of Osheet. Investigating Osheet
in more detail, we found it has some context sensitivity, meaning
that whether or not a given keyword pair is valid depends on either
ordering or argument values. We found two categories of context-
sensitivity. The first category is keywords whose nesting behavior
depends on their arguments. For example, worksheet has distinct
behaviors depending on whether its regular and block arguments
are both empty. In the graph, we represent these two distinct behav-
iors with worksheet and worksheet’. Recall that we only generate
one candidate program for each missing keyword pair, no matter
how many times the keywords are used in the original test pro-
gram. In this DSL, DSLInfer luckily picked the right nested work-

sheet occurrences to copy and the right target locations so that the
resulting candidate program did not fail.

The second category is context-sensitive keywords that must
appear before or after certain other keywords in the same block.
While RDL can express these restrictions by appropriate precondi-
tions, DSLInfer is not designed to discover them. Osheet has 112
failed programs, and 4 out of the failed programs missed keyword
pairs. The failures included exception of the following forms: key-
word method called from a non-nil object, indicating the candidate
program did not miss any keyword pairs; keyword method called
from a nil object; and undefined variable names caused by variable
dependencies DSLInfer could not resolve.

Figure 13c contains a graph showing the partial inferred struc-
ture of the Rails routing language.6 The routing language is particu-
larly interesting because all the keywords are actually implemented
as methods of the same class ActionDispatch::Routing::Mapper.
However, the contract structure shows that particular keywords can
only appear within the block arguments to certain other keywords.
For example, most keywords, like resource, can contain any nested
keyword (as shown in the contract in the lower-right of the figure),
but collection, member, and namespace can contain any keywords
except collection and member (as shown in the contract in the
upper-right of the figure). Thus, we see that RDL allows the con-
tract structure and the implementation structure to differ if needed.
Also, in this particular case, the failed candidate programs con-
tained exact error messages explaining why the candidate keyword
pair was invalid. For example, “can’t use member/collection out-
side resource(s) scope”, and “missing :controller”. Thus, we know
the failed programs do not contain any missed keyword pairs.

We now discuss the remaining DSLs; the structure of these
DSLs are similar to the ones we have seen, so we omit their graphs.

The Turtle DSL contains only one language with four entry
methods for that language. Other than the one failed candidate
program, DSLInfer generated example programs showing all DSL
methods can be nested within any of the entry points. Recall that
DSLInfer only runs one example program for each new potential
edge pair for performance reasons. For this reason, we missed
the valid edge predicate Ñ subject because DSLInfer picked the
subject call that passes a block with dependencies, since DSLInfer

does not catch dependencies in block arguments.

6 For those familiar with Rails, one surprising entry here is devise for,
which is not a standard method. However, the example we used came from
a Rails app that uses the devise gem, which adds this keyword.

save
subgraph
blue
boxes
circle
...
white

digraph

subgraph
blue
boxes
circle
...
white

(a) Graph Spec Structure

columns
style
template
title
worksheet

Osheet::Workbook.new

column
columns
meta
name
row
worksheet'

columns
format
meta
style_class
width
worksheet'

cell
… …

…

(b) Osheet Spec Structure (partial)

Application.routes.draw

devise_for
namespace
resources
root

member
collection
namespace
resources
...

namespace
resources
...

(c) Routing Spec Structure (partial)

Figure 13: Example Inferred DSL Contracts

The Rose DSL uses inheritance in an interesting way: the class
Proxy::Row, which implements the DSL used by the keyword
rows, is a superclass of the class Proxy::Summary, which imple-
ments the DSL used by the keyword summary. Thus, all keywords
in the former can be used in the latter. One such keyword, identity,
is never used within summary in their examples, but DSLInfer is
able to discover that pair.

In StateMachine, DSLInfer discovered two new keyword pairs.
There are 3 failed candidate programs for this DSL, all due to
invoking a method on nil. For each failed program, we constructed a
new successful candidate that copied the original candidate, hence
all 3 failed candidate programs contained missed keyword pairs.

The last two DSLs, Backup and Cardlike, do not generate any
new example programs because their example programs include all
possible keyword pairs.

Note that our study concerned only structural contracts. While
DSLInfer cannot infer contracts involving certain types of struc-
tural contracts with context sensitivity, RDL can describe arbitrary
contracts using pre cond, post cond, etc. These pre- and post-
conditions have access to the full power of Ruby, and hence con-
tracts can perform arbitrary reasoning and throw appropriate excep-
tions to signal contract failures. As future work, we plan to infer
other kinds of contracts in addition to structural and type contracts.

6.3 Threats to Validity

There are several threats to the validity of our experimental results.
One expected threat is whether our benchmark is representative;
to mitigate this concern we selected eight DSLs from a variety of
sources. The other main threats are:

Coverage Limitations. Type contract and structural inference op-
erate only on methods in the examples we used, but these programs
may involve only a subset of the DSL methods. Addressing this
issue is difficult, because it involves divining programmer intent—
DSL implementations often include many helper methods not in-
tended for client use, and it is non-trivial to distinguish DSL meth-
ods from helper methods.

Another coverage limitation is that DSLInfer does not currently
support certain classes of non-alphanumeric method names, such as
[] for indexing. This caused us to miss exactly two keyword names
across all eight DSLs.

Moreover, our testing process did not generate candidates that
involved dynamically defining new keyword methods. For exam-
ple, Cardlike has DSL keywords that, during execution, define ad-
ditional keywords based on the provided arguments. These kinds of
keywords can be supported by RDL using appropriate post task

calls, but we are unable to infer contracts involving them.

Context Sensitivity. In the DSLs we examined, DSL keywords
can usually appear in any order in a block. However, as mentioned
earlier, DSLInfer does miss valid edges in the rare cases when
orderings or arguments are important.

Dependencies. As described above, DSLInfer only copies depen-
dencies that are within the same block as the keyword call, not those
from outer lexical scopes. In addition, dependencies used by the
block argument are not resolved by DSLInfer, which could have
caused one missed keyword pair in Turtle.

7. Related Work

Domain-Specific Languages. Languages provide support for
DSLs in a variety of ways. Lisp [20] has a simple syntax that
translates directly to data values, which can then be manipulated
and executed. Scheme [9, 11, 29] and Racket [16–18] refine Lisp’s
technique by separating code from data and using that separation
to provide additional features like “hygienic” handling of bindings.
Tcl [24] allows the programmer to mark a given code block as un-
interpreted, which reifies it as a string that can be manipulated and
then interpreted as code at run time. In R [32], programmers create
DSLs using a combination of lazy evaluation and first-class envi-
ronments [35]. Mython [28] provides a front-end that can perform
Lisp-style AST transformations on code before handing it over to
the normal Python system for evaluation. Haskell DSLs [21, 22]
typically use a pure embedding, that is, needing no preprocessor or
macro-expander to translate the DSL down to the base language;
monads provide encapsulation to separate the DSL from the base
language. Leijen and Meijer [23] propose Haskell DSLs where the
implementation of the embedded DSL serves as a compiler, rather
than an interpreter. Discussions of many other DSLs can be found
in an annotated bibliography [10].

To our knowledge, DSLs in Ruby have not previously been
studied in the literature. We are also unaware of prior efforts to
support contracts on DSLs.

Proxies. Both Strickland et al. [31] and Austin et al. [4] present
systems for proxying primitive values and interposing on their
operations in JavaScript and Racket, respectively. Method shims
in our implementation are inspired by Strickland et al.’s description
of chaperones and impersonators for functional values.

Specification and type systems for dynamic languages. Ren et
al. [27] present a dynamic type checking system for the Ruby pro-
gramming language. Their system handles normal type information
about classes, methods, and values, but it cannot describe more
complex interactions like the language available within the block
argument to a DSL keyword.

We are aware of only one prior system that implements general-
purpose contracts for Ruby [7], but it similarly has no special
support for DSLs.

RubyDust [1] uses a constraint-based analysis at run-time to in-
fer type information. In contrast to the simple type contracts we
infer for RDL, RubyDust types are structural, e.g., RubyDust can
infer that a method accepts any object with a to s method, some-
thing that led to one category of imprecision in contract inference in
Figure 11. However, RubyDust is also much more heavyweight—
its performance overhead is significant, whereas our type contract
inference has virtually no overhead. Additionally, RubyDust only
works with an older version of Ruby.

Beyond Ruby, researchers have also explored type systems for
other object-oriented dynamic languages such as Python [2, 5] and
JavaScript [3, 34].

8. Conclusion

In this paper, we studied the problem of enforcing contracts for
Ruby DSLs. We develop a formal model of Ruby DSLs, their spec-
ification and checking, and blame tracking. Our model supports
first-order DSL contracts, including those for types; higher-order
DSL contracts; and satisfies a contract erasure theorem. We have
implemented our model as RDL, a DSL contract checking system
for Ruby. The RDL library allows programmers to specify the be-
havior of existing DSLs and to create new DSLs using an abstrac-
tion layer over Ruby’s metaprogramming facilities. To explore the
applicability of RDL, we developed first-order type contract infer-
ence with TypeInfer and structural contract inference with DSLIn-

fer. We ran contract inference on a number of examples, and found
that it is able to successfully infer accurate specifications in a rea-
sonably short amount of time.

Acknowledgments

We would like to thank the anonymous reviewers for their com-
ments. This research was supported in part by NSF CCF-1116740
and NSF CCF-1319666.

References

[1] An, J., Chaudhuri, A., Foster, J.S., Hicks, M.: Dynamic Inference
of Static Types for Ruby. In: Principles of Programming Languages
(POPL). pp. 459–472 (2011)

[2] Ancona, D., Ancona, M., Cuni, A., Matsakis, N.: RPython: a Step To-
wards Reconciling Dynamically and Statically Typed OO Languages.
In: DLS 2007. pp. 53–64 (2007)

[3] Anderson, C., Giannini, P., Drossopoulou, S.: Towards Type Inference
for JavaScript. In: European Conference on Object-Oriented Program-
ming. LNCS, vol. 3586, pp. 428–452 (2005)

[4] Austin, T.H., Disney, T., Flanagan, C.: Virtual values for language
extension. In: Object-Oriented Programming, Systems, Languages,
and Applications. pp. 921–938 (2011)

[5] Aycock, J.: Aggressive Type Inference. In: International Python Con-
ference (2000)

[6] Bentley, J.: Programming pearls: little languages. Communications of
the ACM 29(8), 711–721 (Aug 1986)

[7] Bhargava, A.: contracts.ruby (2012), https://github.com/

egonSchiele/contracts.ruby

[8] Claessen, K., Ljunglöf, P.: Typed logical variables in Haskell. In:
Proceedings of the 2000 Haskell Workshop (2000)

[9] Clinger, W., Rees, J.: Macros that work. In: Symposium on Principles
of Programming Languages. pp. 155–162 (1991)

[10] van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An
annotated bibliography. SIGPLAN Not. 35(6), 26–36 (Jun 2000)

[11] Dybvig, R.K., Hieb, R., Bruggeman, C.: Syntactic abstraction in
Scheme. LISP and Symbolic Computation 5(4), 295–326 (1993)

[12] Elliott, C.: Programming graphics processors functionally. In: Pro-
ceedings of the 2004 Haskell Workshop (2004), http://conal.net/
papers/Vertigo/

[13] Felleisen, M., Friedman, D.P.: Control operators, the SECD-machine,
and the �-calculus. In: Formal Description of Programming Concepts
III. pp. 193–217 (1986)

[14] Findler, R.B., Blume, M.: Contracts as pairs of projections. In: Inter-
national Conference on Functional and Logic Programming. pp. 226–
241 (2006)

[15] Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In:
International Conference on Functional Programming. pp. 48–59 (Oct
2002)

[16] Flatt, M.: Composable and Compilable Macros: You Want it When?
In: International Conference on Functional Programming. pp. 72–83
(2002)

[17] Flatt, M., Culpepper, R., Darais, D., Findler, R.B.: Macros that Work
Together. Journal of Functional Programming 22, 181–216 (2012)

[18] Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT
Inc. (2010), http://racket-lang.org/tr1/

[19] Furr, M., An, J., Foster, J.S., Hicks, M.: The Ruby Intermediate Lan-
gauge. In: Dynamic Languages Symposium (DLS). pp. 89–98. Or-
lando, Florida (October 2009)

[20] Guy L. Steele, Jr.: Common LISP: the Language, 2nd Edition. Digital
Press, Newton, MA, USA (1990)

[21] Hudak, P.: Building domain-specific embedded languages. ACM
Computing Surveys 28 (1996)

[22] Hudak, P.: Modular domain specific languages and tools. In: in Pro-
ceedings of Fifth International Conference on Software Reuse. pp.
134–142. IEEE Computer Society Press (1998)

[23] Leijen, D., Meijer, E.: Domain specific embedded compilers. In: Con-
ference on Domain-specific Languages. pp. 109–122 (1999)

[24] Ousterhout, J.K., Jones, K.: Tcl and the Tk Toolkit, 2nd Edition.
Addison-Wesley Professional, Boston, MA, USA (2009)

[25] Perrotta, P.: Metaprogramming Ruby. Pragmatic Bookshelf (2010)
[26] Reid, A., Peterson, J., Hager, G., Hudak, P.: Prototyping real-time vi-

sion systems: an experiment in dsl design. In: International Conference
on Software engineering. pp. 484–493 (1999)

[27] Ren, B.M., Toman, J., Strickland, T.S., Foster, J.S.: The Ruby Type
Checker. In: Symposium on Applied Computing. pp. 1565–1572
(2013)

[28] Riehl, J.: Language embedding and optimization in Mython. In: Sym-
posium on Dynamic Languages. pp. 39–48. DLS ’09 (2009)

[29] Sperber, M., Dybvig, R.K., Flatt, M., Van Straaten, A., Findler, R.,
Matthews, J.: Revised6 Report on the Algorithmic Language Scheme.
Journal of Functional Programming 19, 1–301 (2009)

[30] Strickland, T.S., Felleisen, M.: Contracts for first-class classes. In:
Symposium on Dynamic Languages. pp. 97–111 (Oct 2010)

[31] Strickland, T.S., Tobin-Hochstadt, S., Findler, R.B., Flatt, M.: Chaper-
ones and Impersonators: Run-time Support for Reasonable Interposi-
tion. In: Object-Oriented Programming, Systems, Languages, and Ap-
plications. pp. 943–962 (2012)

[32] Team, R.C.: R Language Definition. http://cran.r-project.org/
doc/manuals/r-release/R-lang.html

[33] Thiemann, P.: Modeling HTML in Haskell. In: International Work-
shop on Practical Aspects of Declarative Languages. pp. 263–277
(2000)

[34] Thiemann, P.: Towards a Type System for Analyzing JavaScript. In:
European Symposium on Programming. LNCS, vol. 3444, pp. 408–
422 (2005)

[35] Wickham, H.: Advanced R programming (Nov 2013), http://

adv-r.had.co.nz/dsl.html

